Elevated atmospheric carbon dioxide and ozone alter forest insect abundance and community composition
نویسندگان
چکیده
1. Human-induced climate changes threaten the health of forest ecosystems. In particular, carbon dioxide (CO2) and tropospheric ozone (O3) will likely have significant but opposing impacts on forests and their associated insect communities. Compared with other animal groups, insect communities are expected to be especially sensitive to changes in global climate. 2. This study examined the effects of elevated CO2 and O3 (eCO2 and eO2) individually and in combination on the abundance, diversity and composition of forest insect communities. Insects were sampled using yellow pan traps in an aggrading aspen-birch forest at the Aspen Free Air CO2 Enrichment (FACE) site in northern Wisconsin, USA. We trapped for 24 h every 10–15 days throughout the summers (June to September) of 2000–2003. 3. We examined 47 415 insects from 4 orders and 83 families. Elevated CO2 reduced abundance of phloem-feeding herbivores and increased abundance of chewing herbivores, although results were not statistically significant. Enriched CO2 increased numbers of some parasitoids. The effects of eO3 on insect abundance were generally opposite those of eCO2. No significant differences in arthropod family richness were found among treatments. However, eCO2, eO3, or both significantly affected insect community composition in all years. 4. Carbon dioxide and tropospheric ozone have the potential to alter significantly forest insect communities. Feeding guild may strongly influence insect response to environmental change and may provide the best opportunity to generalise for conservation efforts. Because insect communities influence forest health and ecosystem services, continued research on their response to global change is critically important to forest management and conservation.
منابع مشابه
Multitrophic Effects of Elevated Atmospheric CO2 on Understory Plant and Arthropod Communities
Rising levels of atmospheric [CO2] will directly affect the responses and community composition of plants. However, few studies have examined how these changes to plant communities will alter insect communities that rely on them. Here, we report on a study that examined the community-level responses of plants, herbivores, detritivores, predators, parasitoids, and omnivores to increased [CO2] at...
متن کاملFungi in the future: interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities
Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2 ) and ozone (O3 ) concentrations on AM fungal communities. Molecular methods were used to ch...
متن کاملClimate Change and Tritrophic Interactions: Will Modifications to Greenhouse Gas Emissions Increase the Vulnerability of Herbivorous Insects to Natural Enemies?
Insects are highly dependent on odor cues released into the environment to locate conspecifics or food sources. This mechanism is particularly important for insect predators that rely on kairomones released by their prey to detect them. In the context of climate change and, more specifically, modifications in the gas composition of the atmosphere, chemical communication-mediating interactions b...
متن کاملPlant Animal Interactions
Human-induced increases in atmospheric CO2 concentration have the potential to alter the chemical composition of plant tissue, and thereby affect the amount of tissue consumed by herbivorous arthropods. At the Duke Forest free-air concentration enrichment (FACE) facility in North Carolina (FACTS−1 research facility), we measured the amount of leaf tissue damaged by insects and other herbivorous...
متن کاملElevated Atmospheric CO2 Affects Ectomycorrhizal Species Abundance and Increases Sporocarp Production under Field Conditions
Anthropogenic activities during the last century have increased levels of atmospheric CO2. Forest net primary productivity increases in response to elevated CO2, altering the quantity and quality of carbon supplied to the rhizosphere. Ectomycorrhizal fungi form obligate symbiotic associations with the fine roots of trees that mediate improved scavenging for nutrients in exchange for a carbohydr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008